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Executive Summary 
 
This white paper examines GridDB as an IoT (Internet of Things) database. It details how 
GridDB’s architecture and overall structure accommodates and complements the key 
aspects needed by an IoT database for optimal performance. This document also explains 
how GridDB supplies the necessary properties needed in large scale data management.  
GridDB’s other features, in terms of API support and connectors to other software 
frameworks, help give IoT applications more extendibility. 

Introduction 
 
It is estimated that by 2020, there will be 50 billion devices connected to the internet 1. All 
these devices will be connected to the cloud, each other, and to different services. This will 
create a new dynamic and global infrastructure known as the “Internet of Things.” This 
infrastructure will completely transform how individuals and organizations connect to each 
other.   
 
Comprehensive data management is key for many IoT applications as many decisions and 
services are based on the various ways to combine both real-time and historical, stored 
data. One major component to consider in designing an IoT data management framework is 
choosing its database. IoT databases have a much different set of requirements when 
compared to the enterprise systems of the past.  
 
Toshiba’s NoSQL database GridDB was originally designed for IoT workloads and provides 
the performance, flexibility, reliability, and support needed for such applications. GridDB is 
a scale-out, partitioned database that features include in-memory storage and processing 
for high performance and scalability. It has a flexible key-container data model that can be 
easily adapted for use for a variety of different data types. Its use of partitioning and a 
hybrid cluster management architecture provides high availability with reliability. It also 
provides wide support of popular programming languages and third-party software 
packages to make analyzing data and building applications easier. 

Components of an IoT Application 
 
IoT applications can be broken down into three general components: sensors, 
communications, and intelligent systems. 
 
Sensors can be defined broadly as devices that provide inputs about its current state while 
actuators are devices that are used to make changes in the environment. IoT devices can 
range from small inexpensive microcontrollers to expensive industrial machinery.   
 
                                                        
1 https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/iot-
platform-reference-architecture-paper.pdf 
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The communication component of an IoT application transfers all the data between the 
sensors, gateways, and data center or cloud. The components that are connected to each 
other and how they are connected can differ. One model involves connecting sensor devices 
directly to each other for communication. The cloud-to-device model has the IoT device 
connected directly to an internet cloud service to allow for services like remote access. The 
gateway-to-device model connects sensor devices to an intermediary device known as a 
gateway. The gateway can add extra interoperability between cloud services and IoT 
devices.   
 
The intelligence component of an IoT application is the portion that stores, analyzes, and 
process vast amounts of data. It consists of various technologies and frameworks such as 
databases and data processing frameworks and utilizes cloud computing. The operations of 
data processing usually consist of aggregation, analysis, and storage. 
 
The above three components combined create the IoT application which provides services 
to the user such as reporting, analytics, and remote control. Common applications in IoT 
include smart homes, smart cities, and smart healthcare. 

IoT Models 
 
IoT applications can be deployed in a variety of different ways for various domains. The 
layouts can focus on certain layers or endpoints of the application. Different layouts and 
architectures have different requirements. The various IoT application structures also differ 
in their size, scope, and the number of domains that they encompass. The primary 
structures of an IoT system are Edge Computing, Gateway Aggregation, and Direct 
Connectivity. 
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Figure 1: Visualization of IoT Models 

 
 

Edge Computing  
 
The edge is the location where all event data and automated action takes place. In edge 
computing, there are three device types: the edge gateway, the edge device, and the actual 
edge sensor2. Edge devices can be thought of as general-purpose devices with full operating 
systems and processors. These devices do not require internet connectivity and can 
perform analysis and feedback on their own. Their usefulness come into play when the data 
volume is so large that a central server cannot handle all the data at once. They are also 
useful to make data processing as close to real-time as possible. The edge gateway has a full 
operating system with higher computing resources than the edge device. The gateway acts 
as the intermediary between the central server and the edge device. 
 
An Edge Computing IoT will process or filter its data before propagating the portion to be 
stored to the GridDB database. That data can be propagated either using GridDB’s native 
APIs or via some other messaging framework such as MQTT. 

Gateway Aggregation  
 
An intermediary gateway collects information from a set of local sensors and then 
aggregates their data before sending it to a central server. Gateway devices are useful for 

                                                        
2 https://www.ibm.com/blogs/internet-of-things/edge-iot-analytics/ 
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bridging different network types and are typically used in tightly coupled systems, for 
example all the sensors within a building would communicate with the building’s gateway 
which would send the data to the centralized server that receives data from multiple 
gateways. 
 
GridDB can be used in a gateway device through its APIs or the gateways can use a 
secondary messaging protocol such as MQTT to forward the data to the data center or cloud 
where the data would be ingested.  

Direct Connectivity 
 
IoT sensors and devices can directly send their data directly to the cloud or centralized 
servers. The centralized infrastructure can exchange data and control message traffic.3 This 
style of communication is useful for loosely coupled systems like a network of smart 
meters. The devices can either directly connect to GridDB or messages can be sent via an 
application gateway in the centralized infrastructure such as an MQTT or Kafka server. 
  

                                                        
3 http://www.thewhir.com/web-hosting-news/the-four-internet-of-things-connectivity-
models-explained 
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Requirements for IoT Databases 
 
The specific needs and requirements for an IoT database are heavily dependent on the 
application itself, but in general4 an IOT database needs to be scalable, reliable, and flexible.  

Scalability 
 
At its very core, scalability is the database’s ability to meet growing demands as 
requirements and expectations grow. A “scalable” system should respond by utilizing newly 
added nodes to enhance performance and other criteria. The rapid growth of IoT means 
that more sensors and devices are being used to output and process data at larger scales; 
having a scalable database is becoming more and more important for IoT development.  
 

Figure 2: Difference in Scalability between GridDB and Cassandra 

GridDB provides the high performance and scalability required by IoT applications through 
horizontal scalability. Using a memory first architecture helps to maximize performance 
when ingesting and processing large amounts of data. GridDB’s approach to scale-out 
support for adding additional nodes online give IoT applications the needed horizontal 
scalability. These features are further demonstrated in a YSCB benchmark test against 
Apache Cassandra. 
 
GridDB uses in-memory processing and storage as a way to handle high velocity data. It 
aims to keep most or all of its data in-memory, using checkpoint intervals to flush its 
internal memory structure back to disk. GridDB uses its Last Recently Used (LRU) and data 
affinity algorithms to determine which data records stay in-memory. Affinity functions 
make effective use and operation of limited memory areas in a database. 

                                                        
4 http://www.ijcaonline.org/archives/volume159/number8/gurav-2017-ijca-913021.pdf 
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GridDB uses multiple nodes to provide scalability to the database. Large data sets are 
distributed across multiple nodes through partitioning and replication. By keeping an entire 
container in a single partition, performance is further improved by removing the need for 
internode coordination. GridDB automatically balances the cluster ensuring each node is 
assigned a similar number of partitions. 
 
As the data set grows, additional nodes can be added to increase both database 
performance and increase the total amount of storage available. With GridDB Standard 
Edition, new nodes can be added without interruption while the cluster is online. 
 
In a series of benchmark5 tests performed by Fixstars, GridDB outperformed  Apache 
Cassandra over the entire series of tests. The benchmarks used the YCSB on 1, 8, 16, and 32-
node database clusters utilizing the Microsoft Azure Cloud Platform. GridDB showed that it 
scaled significantly better than Cassandra when new nodes were added. The 24 hour time-
trial shows that GridDB is able to operate for extended periods with an update-intensive 
workload without maintenance unlike the log-sorted databases (such as Cassandra) that 
require compaction and other maintenance. 
 

Figure 3: GridDB and Cassandra Performance Over Time 

Flexibility 
 

                                                        
5 https://www.griddb.net/en/docs/Fixstars_NoSQL_Benchmarks.pdf 
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Flexibility means accepting the variety of data types likely to appear over the life of the 
solution. A NoSQL approach provides the flexibility needed to fit different data models to 
changing application requirements. Another factor to consider is the high velocity to which 
data is produced. Often this means that the structure of data is not known ahead of time, 
meaning the database must be able to cope with these occurrences. 
 
GridDB’s key-container model of data allows for easy usage of varying types of data. The 
containers can use any key or a timestamp that allows for easier processing of temporal 
data. The schema of a container can also be modified to evolve over time allowing columns 
to be both removed and added. Furthermore, GridDB has built-in aggregation and geometry 
functions that enable developers to easily queries without having to build their own 
complex routines to perform the same functions. 
 

Key-Container Model 
  
The unique key-container data model used by GridDB has the benefit of providing ACID 
characteristics that can be guaranteed at the container level. In this model, a KEY can 
represent one specific sensor out in the field, while the VALUE (CONTAINER) can represent 
all the data incoming from that sensor. The CONTAINER mostly resembles a traditional 
relational table with columns and rows. Data access uses the key to narrow down and find 
rows and containers. This type of data access allows many different kinds of data to be 
processed quickly.  
 

Figure 4: GridDB's Collection and TimeSeries Container Types 

 
The Key-Container model offers the choice of making the Container either a “collection” 
container, accepting any type of key data, or a TimeSeries Container which uses a 
TimeStamp for a key.  
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The containers in GridDB also have the benefit having an updatable schema. Column can be 
added or removed on a per-row basis and different types of row-keys and indexes can be 
added and removed from existing containers.  
 
To help keep datasets to a reasonable size over time, compression is also supported as well 
as the automatic deletion of data over a certain age.  

Geospatial and Temporal Data Types 
 
IoT systems frequently gather data regarding temporal and geospatial characteristics. 
Applications regarding traffic, climate, and many other domains need reliable, constant 
sources of geospatial and temporal data to be effective. Data objects used in IoT 
applications have spatial characteristics in multiple dimensions. Databases used for IoT 
should support containers, schemas, and indexing of both temporal and spatial 
characteristics.  
 
GridDB’s TimeSeries container uses the timestamp as the row-key. Out-of-the-box 
acceptance and utilization of time data lends a rather large advantage to GridDB in this 
area.  
 
These TimeSeries Containers allow for special time functions in dealing with time-stamped 
data. Timestamps can be used to delete certain data after a set amount of time has passed. 
TimeSeries containers also support data expiration and compression for providing effective 
data management.   
 
GridDB also supports several time-specific queries and functions as well. It supports the use 
of time-weighted averages as well as the ability to perform linear interpolation to estimate 
data values. There is also the ability to get a time-sampling with start and end time and a set 
time interval between values. 
 
Time Query Example: 
 

SELECT TIME_SAMPLING(voltage103, TIMESTAMP('2011-07-01T00:00:00Z'), 
TIMESTAMP('2011-07-02T00:00:00Z'), 1, HOUR) FROM plant1 

 
GridDB SE (Standard Edition) and above can support spatial data as column types for its 
containers along with geometric queries. For Geometric data, objects can be created 
through the C and Java API’s or through TQL queries. GridDB accepts objects in WKT (well-
known-text ) form and supports objects like POINT, POLYGON, LINESTRING, 
POLYHEDRALSURFACE, and QUADRICSURFACE. GridDB also offers the use of several ST_ 
functions in TQL queries like intersections to be performed on Geometric data.  
 
Creating a Geometry Object with the Java API: 
 

Geometry coordinate = Geometry.valueOf(“POINT(33.651442 -117.744744)”); 
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Geometry objects can be created with TQL through ST_GeomFromText function. Other 
objects such as rectangles, planes, spheres, cones, and cylinders can also be created with 
TQL. GIS functions such as generating SRID’s and calculating intersections between 
geometric objects are also supported.  
 
The following TQL example returns results with points within the given polygon: 
 

SELECT * WHERE ST_MBRIntersects (geom, ST_GeomFromText ('POLYGON 
((0 0,10 0,10 10,0 10,0 0))')) 
 
 

Reliability 
 
Reliability means high-availability and peace of mind; it is having the ability to stay online 
and accept requests even if multiple nodes experience sudden failure. 
 
GridDB has multiple mechanisms and features to provide availability, reliability, and 
consistency. By storing data on multiple nodes using replication, it is able to withstand node 
failure of both its master and follower nodes, providing both the performance of a Master-
Slave architecture and the reliability of a peer-to-peer architecture.  
 
Distributed systems like GridDB systems typically use either a Master-Slave architecture or 
a Peer-to-Peer architecture for managing their nodes. The “Master” in a Master-Slave 
distributed system is typically a single point of failure and peer-to-peer systems, all nodes 
are identical but will incur some communication overhead to provide consistency. GridDB 
is a hybrid, any node is capable of being the master and in the event of a master-node 
failure,  one of the followers will take over ensuring continuous service.  

Failover Support 
 
GridDB’s method of handling node failure is by essentially having three “tiers” of nodes. A 
node can either be a partition owner, backup node, or a catch-up. GridDB’s master node 
monitors its slave nodes by periodically checking for a response to its “heartbeat.” When a 
slave node goes down it is marked and its partitions are assigned to other replicas. When a 
master fails, a backup node is “promoted” to master, and a catch-up node is “promoted” to 
take that backup node’s place. This entire process happens automatically. 

Replication System 
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GridDB allows for the custom setting of replication levels for an entire cluster of nodes. 
Every partition has a node that is its owner and then the specified number of replicas or 
backup nodes. In the event of a failure, the Autonomous Data Distribution Algorithm 
(ADDA) will re-assign owner or backup roles for a partition and instruct the new nodes to 
begin synchronization.  

Figure 5: Autonomous Data Distribution Algorithm 

 
 
GridDB can be configured for either immediate or eventual consistency. With immediate 
consistency, the partition owner handles all read and write requests and propagates them 
to the backup nodes. In eventual consistency, replicas can respond to read requests.   

Hybrid Cluster Management 
 
GridDB uses a hybrid architecture for cluster management. An algorithm is used to 
determine the master node and in the case of the master failing, a bully algorithm is run 
again to determine the new master node. Without being able to failover the master, the 
master becomes a single-point-of-failure (SPOF). This allows for GridDB to retain high 
reliability and the higher performance associated with master/slave architectures versus 
peer-to-peer architectures.  

Effective Data Analysis 
 
One key part of making an IoT application scalable and effective is the use of data analytics. 
IoT devices create massive amounts of data from a variety of contexts. Using data analytics, 
whether performed on real-time data or historical data, can provide invaluable insights for 
both the organization and the users. In general, data processing in IoT can be broken down 
into three approaches: real-time or stream processing, batch jobs, and ad-hoc user queries. 
 

Stream Processing 
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Stream Processing allows applications to collect, integrate, and visualize real-time stream 
data. This means applications can process and act on their data as soon as it is produced 
meaning data can be seen as infinite streams. These types of queries allow analysis on large 
amounts of data from multiple sources in real-time. This form of processing allows for 
businesses to adapt and conform to their analytical and business needs at a faster pace.  
 
In the context of IoT, a well-developed application that utilizes real-time stream processing 
can solve many different challenges. Real-time stream processing can aid in faster detection 
of anomalies and abnormalities to provide quick responsiveness. Stream processing also 
allows for live monitoring as well as for automated alerts and notifications.  
 
Many applications that utilize stream processing use messaging brokers such as Apache 
Kafka and MQTT. MQTT provides lightweight machine-to-machine communication and can 
be used on nearly any IoT device. It uses a publish-subscribe model to send messages 
across devices and different services through its API. GridDB provides connectors to Kafka 
and MQTT so database querying and storage can be integrated seamlessly for an IoT 
application.  
                                                                                                                                                                                         
Kafka is another messaging broker that uses the publish-subscribe model. It streams data to 
provide real-time streaming and data pipelines. GridDB provides connectors to Kafka and 
MQTT through their APIs. MQTT gives efficient and fast communication between IoT 
sensors. Kafka gives real-time data messaging to provide real-time processing. Using 
GridDB in combination with MQTT and Kafka services gives an IoT application quick and 
efficient data processing. 

Batch Processing 
 
Batch processing is defined as the processing of a group or “batch” of transactions at once. 
Once the processing begins, no user interaction should be required. Batch or more 
transactional processing is used to help automate actions and decisions in IoT. Batch 
processing provides personalized data so that an application can respond to certain events. 
 
Batch processing can be cheaper and more efficient than transactional processing and 
allows businesses and organizations to carry out large tasks during off the clock periods 
where the strain on resources is smaller. It is often used for creating analytics or reports at 
specific time intervals such as a monthly report that uses the previous month’s worth of 
records at once without intervention. 
 
One of the most popular frameworks used in batch processing is Apache Hadoop which has 
a layer known as MapReduce. MapReduce is Hadoop’s native batch processing engine. This 
engine allows effective and inexpensive processing of large data sets when time is not a 
large factor. GridDB supports batch processing with a connector to MapReduce and the 
Hadoop File system.  
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Figure 6: GridDB as part of a Map Reduce Application. 

 
GridDB databases can be used as input sources as well as output destinations for 
MapReduce batch jobs. With GridDB as the storage engine and MapReduce as the 
processing engine, a foundation is provided to process multiple workloads at a time from 
many different domains. This connector, when put in combination with GridDB’s high 
performance from parallel and in-memory processing, allow MapReduce to handle more 
diverse workloads. 

Ad-hoc User Queries 
 
Ad-hoc or user queries are created spontaneously whenever the need to get certain 
information arises and may involve adjusting ‘WHERE’ clauses or other location or source 
specific conditions. For example, depending on the choice a user makes in a user-interface, 
it may change what values in the WHERE clause are set or which containers the database 
selects from. 
 
GridDB provides ad-hoc queries through TQL. TQL is a simplified version of SQL for NoSQL 
products. Ad-hoc queries can be made through a Query object in GridDB’s APIs. Queries can 
be generated simply by using TQL strings. These queries can be generic selection queries as 
well as time-specific aggregations and geometry queries and operations. Those strings 
contain the keywords, ranges, options, and sources for the query. TQL has the benefit of 
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being created dynamically and can be adjusted depending on the application’s context. Once 
these strings are made, the query object is created and later fetched. 
 
TQL Example ( Java API ): 
 

Query<Row> query = collection.query(“SELECT * FROM sensors WHERE volts = 
‘“ + voltage + “‘“); 
 
GridDB also has a functional Apache Spark with a database connector. Apache Spark is a 
parallel data processing framework to provide fast data analytics. Using the connector 
allows a GridDB database to be used as an input source for Spark queries and analytics. Its 
interactive shell can be used to quickly and easily perform ad-hoc queries by data scientists 
or developers or can be built into user-facing business applications.  

Use Cases 
 
GridDB has been already implemented in several different IoT projects: 
 
An industrial manufacturing company selected GridDB as their database for their global 
compressor management system. The system provided cloud services to collect, store, 
analyze, and visualize data from compressors from around the globe. Processing data at this 
scale allows for comprehensive support and maintenance packages worldwide. 
 
In 2016, GridDB was used to collect data from distributions of smart meters for an electric 
power company in Japan. The company had a total of 3 million smart meters. Smart meter 
data would be collected every 30 minutes and stored for 3 months. This resulted in a data 
set over 13 billion records totaling 2.6TB. Thanks to the GridDB’s fast performance as well 
as its support for Hadoop MapReduce processing, it takes 40 minutes to analyze 43.2GB of 
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data. This rate improves performance by over 2000 times when compared to the previous 
implementation. 

 

Figure 7: GridDB Solution for Smart Meter Data 

In 2015, Toshiba began offering the Building Energy Management Systems (BEMS) with 
GridDB as its database. BEMS’s monitor and control a building needs which can includes 
heating, ventilation, air conditioning, lighting, and security. GridDB stored 2TB of data from 
hundreds of buildings with thousands of records being transacted each second.  

Conclusion 
 
GridDB provides high throughput with an in-memory and persistent storage and a fast 
hybrid master/slave cluster management model. With modifiable containers, GridDB 
provides flexibility that is able to easily adapt as your data changes. Your data is safe in 
GridDB with its reliability and consistency features. GridDB is one of only a few ACID -
compliant NoSQL databases and its Autonomous Data Distribution Algorithm (ADDA) 
algorithm ensures data is efficiently replicated in the case of a failure.  
 
Meanwhile, developing applications is easy with a SQL-like TQL query language and native 
Java, Python, Ruby, and C APIs. Working with real world data is made easy using the 
geometry functions and TimeSeries container. GridDB also offers the ability to integrate 
with other open source projects such as Kafka, Hadoop MapReduce, Apache Spark, and 
KairosDB.  
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While selecting a database for an IoT application depends on particular project needs, 
GridDB is an ideal choice for most workloads because it provides high performance along 
with the flexibility and reliability required over the lifetime of the project.  
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